Stability of Neuronal Networks with Homeostatic Regulation
نویسندگان
چکیده
منابع مشابه
Stability of Neuronal Networks with Homeostatic Regulation
Neurons are equipped with homeostatic mechanisms that counteract long-term perturbations of their average activity and thereby keep neurons in a healthy and information-rich operating regime. While homeostasis is believed to be crucial for neural function, a systematic analysis of homeostatic control has largely been lacking. The analysis presented here analyses the necessary conditions for sta...
متن کاملSupplementary Information: Stability of neuronal networks with homeostatic regulation
Here we 1) derive stability conditions for the network with a non-linear f/I curve, and 2) the tighter stability criterion which be obtained by considering only the slowest mode of the system. Qualitatively, for the 3-dimensional system a criterion exists based on the envelope of the non-linearity. For the full network, the criterion is based on the maximum slope of the non-linearity and this i...
متن کاملCuriosity-driven reinforcement learning with homeostatic regulation
We propose a curiosity reward based on information theory principles and consistent with the animal instinct to maintain certain critical parameters within a bounded range. Our experimental validation shows the added value of the additional homeostatic drive to enhance the overall information gain of a reinforcement learning agent interacting with a complex environment using continuous actions....
متن کاملHomeostatic presynaptic suppression of neuronal network bursts.
Spontaneous synchronized bursts of activity play an essential role in the maturation and plasticity of neuronal networks. To investigate the cellular properties that enable spontaneous network activity, we used dissociated cultures of hippocampal neurons that express prolonged network activity bursts. Acute exposure to a low concentration of N-methyl-d-aspartate (NMDA) caused an increase in spo...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS Computational Biology
سال: 2015
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1004357